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Abstracr We investigated the behaviour at zero temperature of a random self-interacting chain. 
using a steepest-descent algorithm. We mainly studied the energy minima landscape, showing 
th31 lhere are few relevant energy minima at this temperature: we estimate the radius of their 
basin of alwction. 

1. Introduction 

It is well known that biologically active proteins are characterized by one or very few 
three-dimensional structures [I-71. 

There are interesting connections between the protein folding phenomenon and the 
physics of disordered systems: it has already been established that the protein folding 
mechanism is a global optimization problem analogous to the determination of the minimum 
free-energy configuration of a spin glass 18-16], 

So, beyond its importance in biochemical sciences, protein folding provides us with 
an intriguing statistical mechanics problem, which can be studied in the same framework 
derived for other disordered systems. 

At present, the main efforts of this line of research are oriented in establishing which 
properties proteins share with random self-interacting chains, in  order to distinguish those 
features that have been selected by natural evolution from the ones exhibited by an entire 
class of disordered systems. In other words the final aim is to point out which are the uni- 
versal physical properties governing the behaviour of all these systems, i.e. which properties 
do not change when we change the chemical details of the polymeric chain slightly. 

In this paper we will describe some of the new results we have obtained investigating 
the behaviour at zero temperature of a random self-interacting chain: our starting point is the 
results obtained by Iori etal adopting a simple model (IMP) of a random heteropolymer [17]. 

They defined the phase diagram of such a heteropolymer and studied its main properties 
under the evolution of local Monte Carlo dynamics. 

We are now interested in studying the energy minima landscape of the model: using 
a steepest-descent algorithm we demonstrate that there are few relevant energy minima in 
the zero-temperature limit, as was expected if we want to reproduce the characteristics of a 
native protein. We also estimate the basin of attraction of these minima. 

Another important feature emerges from our study: there is evidence of a hierarchical 
organization, at least with two levels, of the low-lying energy states. 

0305-4470/95/061469+11$1950 @ 1995 LOP Publishing Ltd 1469 



1470 M V Struglia 

We are also interested in comparing all these results with those obtained for 
heteropolymers with a reduced number of components. 

The paper is organized as follows. In the next section we briefly recall the main results 
obtained by Iori ef ai, in the third and fourth sections we will describe the results that 
have been obtained for a chain made up of 30 points, in the fifth section we compare these 
results to those obtained for a IS-point chain. In the last section we State our conclusions 
and outlooks. 

2. The model 

We consider N sites of a chain in continuum three-dimensional space and we indicate their 
position by the three coordinates x; .  We assume that different sites of the chain interact 
with one another in the following way: 

where rf,j is the usual Euclidean distance between sites i and j .  
The harmonic term between first-neighbours along the chain avoids the system 

dissociation. The repulsive term becomes relevant at short distances, the attractive term, 
when it i s  strong enough, allows the chain to assume a globular shape. The last term 
in (1) represents the quenched potential chosen so as to have zero expectation value and 
correlation: 

( q i . j  v k . 1 )  = 60. j ) .Q, l l .  (2) 
In a biological picture the sites of the chain represent the points where the protein folds. 
We expect the disordered part of the potential to simulate the interactions between amino 
acids themselves, and with solvent molecules. 

The Hamiltonian is defined as 

i = l  Jzi 

The first interesting results were obtained using a local Monte Carlo dynamic. In order 
to obtain information on the system behaviour at equilibrium, the expectation value of the 
energy, the link, and the gyration radius of the system were measured. 

Since we are mainly interested in comparing the different shapes assumed by the polymer 
during the simulations it is very useful to define a distance in the conformational space. 

Let us call the 01 and ,3 two configurations that we have generated. We define the 
distance between two configurations as the minimum over roto-translations of 

!=I p=1 

which we shall call overlap between the configurations 01 and ,3. We remind the reader 
about the possibility of using another definition of distance involving the energies of the 
two configurations [171. 

First of all, varying the parameters in the Hamiltonian, we can recognize three possible 
different phases for the system: coil, globule but unshaped, frozen. The form of the overlap 
distribution enables us to distinguish which phase the system is in. 

In the first two situations the overlap has a single-peaked distribution, but in the globular 
phase, the most probable distance between two configurations is much smaller than that of 
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Figure 1. P(S2)  in the fmzen phase, 6 = 6.0 and A = 3.8. 
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Figure 2. Squared chain distances 6' fmm some given chains (that LIE indicated by a venial 
lie) wirh N = 30. 

the coil phase. There is evidence that in the coil, as in the globular phase, the system 
does not have a preferred shape, but in the first case the chain is practically open, in the 
second case it is folded in a globule, and the overlaps between two different configurations 
are strongly reduced (see [17]). The transition between these two phases is essentially a 
transition in the attractive parameter A at small values of E ,  as shown in [17]. 

When the random potential strength E increases, exceeding a critical value, the 
distribution of overlap changes and shows a more complex structure. The system studied 
in [17] was a 30-point chain, and its evolution under Monte Carlo dynamics, in the frozen 
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phase, was studied with the following values of the parameters: R = 2, A = 3.8, B = 6.0, 
B = 1. The results of these simulations are repotted in the figures 1 and 2. 

As we can see in figure 1 there is a great contribution at very low values of 6*, which 
corresponds to very similar configurations, namely configurations belonging to the same 
state. Then there is a second peak centred on a higher value of  the distance corresponding 
to configurations in different states. In figure 2, the distance from a given configuration 
is plotted versus the Monte Carlo time. We note the existence of quite long-lived states, 
between which the system jumps. This means that in this phase, the one we calledfrozen, 
there are a lot of configurations conformationally very similar with one another and also 
quite stable. As a matter of fact the system spent a lot of time in their neighbours before 
jumping to another state, and often it  came back to a state already visited. 

We recall that there is a strong analogy between the phase-diagram of such a random 
heteropolymer and the phase-diagram of real proteins, where we encounter a coil phase, 
and afolded phase, biologically active, characterized by one or few tertiary structures. 

3. The zero-temperature limit: the energy minima landscape 

We shall now show the main results obtained by the application of a steepest-descent 
algorithm on the system just described. We recall that this algorithm provides a method of 
minimizing functions with more than one variable, searching the minimum in the direction 
along which the function decreases most rapidly. When the gradient’s module becomes 
smaller than a given tolerance the research is stopped. 

Such an algorithm enables us to reduce the thermal noise visible in the Monte Carlo 
history at T = 1, and to study the energy minima landscape, that. in analogy with other 
disordered systems, we expect to be corrugated and characterized by the presence of valleys 
separated by high-energy barriers. 

For these purposes we have selected a wide sample of configurations between those 
generated by the Monte Carlo with p = 1, and we have applied the steepest-descent 
algorithm to minimize their energy. In this way we can identify the nearest minima to 
the initial configurations, namely the energy minima which the system would reach if it 
were suddenly frozen. 

The results are shown in figures 3 and 4: the first one represents the behaviour of 
the distance of all the minima configurations from the one indicated by the vertical line. 
As we can see, the picture is very similar to the one obtained at @ = 1, but without the 
thermal noise, and one state is practically reduced to a straight line with rare fluctuations. 
This essentially means that many configurations, belonging to the same state, are moving 
towards the same energy minima. 

Figure 4 is even more interesting, in which the overlap distribution obtained from the 
energy minima configurations is shown. 

First of all we do not a continuous range of overlaps; it follows that we can distinguish 
between some particularly relevant values of the overlap, characterized by the higher spikes, 
and a lot of less interesting little peaks. It means that few energy minima configurations, 
reached by the system applying the steepest-descent algorithm, are preferred to the others. 

This is also confirmed by the fact that the most important contribution is, without 
any doubt. the one centred on very low values of S’, coming from those configurations 
which have fallen into the same minimum. We then encounter a structure extending from 
S2 - 0,001 to 6’ - 0.15 and corresponding to those configurations that fell into different 
minima of the same state. 

The second major peak and the nearby structures extending from 6’ - 0.25 to J2 - 0.5, 
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Figure 3. Squared chain distances 6' between cooled configurations with N = 30. 
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Figure 4. P(6') between cooled configuntions with N = 30 

are the contributions coming from configurations which have fallen in the minima belonging 
to different states. 

We can interpret our results in the sense of the existence of at least two levels of 
similarity in our system: configurations belonging to the same state move in no more 
than five or six different minima, conformationally similar, in the sense of (4), instead 
configurations belonging to different states have clearly distinct shapes. So we can imagine 
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the energy landscape of the IMP model as made of some valleys, representing different 
states, and a p n e  structure inside them, made of the minima belonging to the same state. 
The dynamics between the largescale structures is rather slow, on the other hand, inside 
the micro-structures, we have a faster dynamic and the system oscillates around a ‘mean 
configuration’. 

4. Study of stability 

Once we have stated that there are not so many relevant energy minima, we are interested 
in understanding how stable they are under a perturbation of their configuration, in order 
to better characterize the minima energy landscape. Let us explain what we mean: we 
consider the configurations corresponding to the most relevant energy minima, x M ,  being 
the ones in which the protein falls most frequently, and we add to them a perturbation 6 x  
chosen at random. In this way we obtain a guess configuration: 

xg = X M  + 6 x  (5)  
on which we apply the steepest-descent algorithm. For each minimum we try different 
perhlrbations with increasing module, in such a way that the squared distance between xg 

and XM increases as 

(6) 
where 6x2 is calculated according to the given definition (4). In this way we can establish 
with which frequency the system comes back to the initial minimum energy configuration 
as we propose perturbations always more distant. 

In our runs we made fifty trials for every value of r 2 ,  whose values extended from 0.06 
to 0.25 with step 0.01. We refer now to the case of the 30-point chain, particularly to the 
two longest stable states we can see in the Monte Carlo history. 

Let us consider the first stable state, in which the system falls down three times. The 
most relevant minima encountered in its study have the following energy values: 
(i) Stable state 

2 r 2  = 6x 

El = -661.6599 
E3 = -660.1942 

E2 = -661.1410 
Ea = -659.8622. 

Exploring their surroundings as just described, we found that the system came back to 
the initial minimum in more or less 55% of the trials, another three or four minima with 
higher energy were picked up about 1 4 %  and a lot of minima with high energy values 
were picked up just once. 

If we draw histograms representing the frequencies with which the system comes back 
to the initial configuration for the different distances of the proposed perturbations we can 
guess the radius of the basin of attraction for the three minima, as the point at which the 
probability to come back to the starting configuration falls to f .  obtaining values of r 2  at 
about 0.15-0.17 (see figure 5. The errors appearing in the histograms are calculated as 

1 K ( M - K )  ‘=-( M M ) 
according to the usual binomial distribution. where M is the number of all of the trials, at a 
given r 2 ,  and K is the number of times that the system came back to the initial minimum. 

The results relative to the study of the energy minima belonging to the second stable 
state are. quite similar: we can recognize this state in figure 2(a) as the longest one. in 
which the system falls down twice. The lowest energy minima we encountered are: 
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Figure 5. Histogram of the frequency with which the system comes back to E = -661.6599 
versus r2  (N = 30). 

(ii) Stable state 

El = -660.1273 Ez -659.9702 E3 = -659.3940 

and just as in the previous case the polymer came back to the starting configuration in about 
55% of the trials. 

The values we have obtained for the radius of the basin of attraction of the energy 
minima are again at about r2 - 0.15-0.16. 

This means that the lowest energy minima we have encountered are similarly relevant 
in respect of their basin of attraction, in the sense that they are equally stable. 

5. Simulations with N = 15: results and comparison 

It seems particularly relevant to understand the dependence of the behaviour of the system 
by the number of points constituting the chain, so we have made simulations with N = 15. 
In this section we shall show the results obtained. 

We chose 15 points because it is a sufficient number of components to see the folding, 
and the CPU time spent in a simulation is quite short. 

Just as in the previous case, we first studied the behaviour of the system at fl = 1 using 
a Monte Carlo algorithm with the same values for the parameters of the Hamiltonian, and 
we get similar results. We can observe long-lived states with configurations characterized 
by a definite fold around which the chain fluctuates: with a reduced number of components 
we found only two different states between which the system jumps. 

In figure 6 we show, the distance of all configurations from a given one, indicated in the 
figure with a vertical m o w ,  figure 7 refers to the squared chain distances between cooled 
configurations. 

Using the steepest-descent algorithm we also got the distribution P(S2)  at T = 0, 
(figure 8): it is quite similar to that obtained with N = 30. In figure 8 we can see that the 
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Figure 6. Squared chain distances 8’ from some given chains (that me indicated by a vertical 
line) with N = 15. 

,-. 
$1.0 
0 

0.5 

0.0 
0,o 2000.0 4000.0 6000.0 8( I. 

Monte Carlo time 

Figure 7. Squared chain distances S2 between cooled mnfiguntions with N = IS. 

first peak is at 8’ - and it is the conhibution coming from those configurations which 
fell into the same minimum. We can then recognize two structures: the first one extends 
from 6’ - 0.1-0.3, and shows what the typical distances between minima belonging to the 
same state are. The second one, Sz E (0.5,0.8). comes from minima belonging to different 
states. 

Comparing these results with the previous ones, obtained in the case N = 30, we can 
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Figure 8. P(S2) between cooled configurations with N = 15. 

see that in this case the structures relative to the contributions coming from configurations 
in the same state or in different states are even more clear and definite. In fact, in the 
15-point chain case the leading contributions to the distribution come from configurations 
belonging to the same state, the two structures in the P(S2)  are clearly separate, and the 
long tail on high values of Sz is practically absent. 

We think that all these differences are related to the fact that in our simulation with 
N = 15 we have encountered just two states. 

There is also evidence that in the case N = IS we have entirely explored the space of the 
configurations during the simulations: this ensures the validity of our previous considerations 
about the organization of the minima energy landscape, as discussed at the end of the third 
section. 

We shall now show the results we have obtained during the study of stability. We 
explored from r' = 0.024.3, with steps of 0.01. We did fifty trials for each value of r2 ,  
(i) Stable state 

E1 = -252.6436 
E3 = -252.4609 

E2 = -252.5755 
Eq = -251.6819. 

Studying the stability of these minima we obtained an interesting result. The first two 
minima are stable in the sense that the system came back to the initial configuration in 61% 
of trials for the lowest one, and in 55% of trials for the second one. But the other two 
energy minima, E = -252.4609 and E = -251.6819, are as stable as the others. In both 
cases the system preferred to fall down in the two lowest minima rather than to come back 
to the initial minimum, and the radius of the basin of attraction is shorter than that of the 
other two minima, and it is about at r 2  - 0.1 1 rather than to r2 - 0.17 (see figure 9). So we 
have a clear differentiation between the minima belonging to the same state, in terms of the 
relevance of their basin of attraction: the first two configurations will be clearly preferred 
to the others. 
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Figure 9. Histogram of lhe frequency with which the system comes back lo E = -252.6436 
versus I* (N = 15). 

The results relative to the second state are similar, but we did not find the minima as 
unstable. 

6. Conclusions and outlook 

Undoubtly, one of the main results to achieve is to understand how many folds the system 
can assume. 

We have shown that, as expected for real proteins, the IMP model has few-one  or 
more-stable states in respect to the usual spin glasses, even with 30 or 15 points. 

We think that this important difference is mainly due to the fact that the heteropolymer 
model we have adopted is less frustrated than a usual spin glass is. The points of the chain 
can move freely in the three-dimensional continuum space, adjusting their position in order 
to minimize the possible frustration coming from the random interaction. 

The IMP model seems to reproduce some of the most important features of the behaviour 
of real heteropolymers, such as the phase diagram or the allotropy, giving a clear indication 
in the sense explained in the introduction: there are some properties not strictly related to 
the real sequence of amino-acids along a heteropolymeric chain, but they are common to 
an entire class of physical systems. 

We recall that some interesting related results have also been obtained by Shakhnovich 
and Gutin [13-161. and by Fukugita etnl  1171. 

In particular, we recall that the results described in this paper are in good agreement 
with those described in [17], concerning the study of a two-dimensional IMP model. The 
authors observe the same dynamical behaviour of the three-dimensional case under local 
Monte Carlo evolution, and using both deterministic quenching procedures and simulated 
annealing they find that an increase in the strength of the random interactions E leads to the 
appearance of a single deep global minimum well separated by an energy gap from other 
local minima. 
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We also obtain interesting information on the organization of the states, which appear 
to be divided into two distinct levels of similarity, and on the energy minima landscape, 

We are now interested in improving our knowledge about the behaviour of the system 
if we change the number of components N ,  or if we just change the values of the quenched 
couplings. 
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